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Abstract

Two new types of geometric representation provide visual appreciation of the extent to which a possible common stress tensor
is constrained by a set of striated faults (solving the `inverse problem'). The ®rst type uses only orientation of fault plane and

striation, and involves projections from a space, having dimensions of the six distinct elements of the stress tensor, in which
faults are represented as poles on a hypersphere. Any girdle or clustering of poles permits identi®cation of one or more normals,
representing possible stress tensors. These tensors provide the dimensions of the second type of diagram in which directions

represent both senses of shear and proportions in which component tensors are combined, so enabling identi®cation of the total
tensor which best matches the complete data. Examples illustrate uses for both homogeneous and heterogeneous sets of data,
showing varying degrees of constraint on stress state. The discussion of mathematical issues includes the wider signi®cance of

tensor element space, regarding degrees of freedom, estimators of error and mismatch, and degeneracy. # 1998 Elsevier
Science Ltd. All rights reserved.

1. Introduction 1: stress tensor methods

This paper is o�ered as a contribution to those stu-

dies which, by integrating data from many striated

faults, attempt to acquire information on past deviato-

ric stress. Other types of study integrate such data to

attempt to obtain displacement patterns (`kinematics')

or gross changes in shape of a rock-mass (`defor-

mation' or `strain'). The fundamental assumptions

underlying studies of the type addressed here relate to

stress only. They are as follows.

1. The stress tensor was constant through the space

and time of generation of the fault set.

2. Each striation on a fault surface indicates the direc-

tion of the normal projection of the traction vector

on that surface.

2. Introduction 2: visualisation of data sets

The importance of visual representation of con-
straints is well established in structural geology. One
example is in the determination of a two-dimensional
strain ratio from sets of elliptical markers. Algorithms
exist for a direct calculation, such as that of summing
second moments of ellipses (Shimamoto and Ikeda,
1976). However, the method is little used because it
provides no information on the likely acceptability of
the result, and in particular on the underlying assump-
tion that the sample is representative of an isotropic
population. Instead, structural geologists produce an
(Rf ,f)-plot (see, for example, Ramsay and Huber,
1983). Its representational space has orthogonal
dimensions Rf and f, neither of which correspond to
dimensions of real space. Yet, it is the representation
of choice for structural geologists. Visual matching of
`onion skins' may lack the simplistic quanti®able pre-
cision beloved of `quality control', but it shows us the
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goodness of ®t and the patchiness of our data, not just
in summary but of how each individual datum sits
within the set.

A second example relevant to this paper is the use
of stereograms to show a great circle girdle of data
points. The best ®t circle and its goodness of ®t may
be calculated and presented non-graphically as sum-
mary quantities. Yet the stereogram remains worth
plotting because it shows how each datum ®ts into and
contributes to the pattern as a whole.

Studies of strain, fabric and fold analysis already
enjoy visual appreciation of how data contribute to
the overall estimation. The aim of this paper is to pro-
vide the same for studies of fault striation patterns.

3. Information used: essential and optional

The essential record of every fault consists of the
attitude of the fault plane and the orientation of its
striae. A record of sense of shear is not needed for
every fault. A procedure which permits shear sense to
be incorporated for only part of the data set is advan-
tageous for three reasons:

1. Any striated fault constrains the range of possible
stress tensors, even if its shear sense is unknown.

2. Interpreting ®eld evidence of shear sense can be
contentious, and is more prone to error than
recording of orientations.

3. The mathematics of equalities is simpler than that
of inequalities, leading to simpler graphical rep-
resentation.

4. Conceptual basis of the main method: ss-space, f-poles
and ss-vectors

Each datum consists of the direction cosines of two
unit vectors: n, the fault normal and b, the direction in
the fault plane at right angles to the striae. The
assumption that the stress tensor, ss, generates traction
(ss.n) with zero component in the direction of b pro-
vides that b.(ss.n)=0. The latter equation has the
expanded formXi�3
i�1

Xj�3
j�1

bisijnj � 0: �1�

This equation is linear in the six distinct elements of
the symmetric matrix ss, and it has known coe�cients
composed of binj products.

Equations of the above form in two or three vari-
ables have graphical representations which are well

known. In two-dimensional (x,y)-space, an equation.
ax+ by=0 represents a one-dimensional line through
the origin to which the vector {a,b} is perpendicular.
In three-dimensional (x,y,z)-space, an equation
ax+ by+ cz=0 represents a two-dimensional plane
through the origin with a normal vector {a,b,c}. These
vector relationships are better displayed by rewriting in
the forms: {a,b}.{x,y}=0 and {a,b,c}.{x,y,z}=0. Such
equations specify the locus, which has one less dimen-
sion than the co-ordinate space, of all vectors perpen-
dicular to the vector composed of the coe�cients (a,b,
etc.). They can be extended to any number of dimen-
sions.

Eq. (1) represents in six-dimensional s-element space
(hereafter, `s-space') a ®ve-dimensional hyperplane
with a vector normal given by its coe�cients. Each
fault datum provides the coe�cients de®ning its own
®ve-dimensional hyperplane. Any s-space vector lying
within that hyperplane represents a stress tensor
capable of generating traction which accords with the
fault datum. The problem of determining a common
stress tensor is thus transformed into the geometric
one of ®nding the common s-space vector along which
the hyperplanes representing the faults intersect. This
is directly analogous to determining the intersections
of planes in three dimensions. The latter would nor-
mally be considered in terms of great circles, which are
the intersections of the planes with a surface of unit
distance from the origin (a sphere). Their mutual point
of intersection represents the planes' common linear
direction. Similarly, hyperplanes in six dimensions will
intersect a surface of unit distance from the origin (a
`hypersphere') along great hypercircles and their inter-
section will represent the common s-space vector
direction.

The practical problems of representing more than
three dimensions can be alleviated in a number of
ways. One is a careful choice of projection, which will
be considered in the next section. Another is by using
poles. Great circles are unwieldy, and great hypercir-
cles unmanageable, but their poles can be represented
as points in projections into two or three dimensions.
To avoid ambiguity in what follows, a pole to the
hyperplane representing a single fault in s-space will
be called an `f-pole'. If the faults have a common gen-
erating stress, their f-poles will lie on a great hypercir-
cle girdle (analogous to the great circle girdle of poles
to planes with a common intersection in three-dimen-
sions). The pole to this girdle represents the intersec-
tion direction of the hyperplanes. Its co-ordinates in s-
space are in proportions corresponding to the elements
of the generating stress tensor. In vector terminology,
the s-space direction cosines of the vector normal to
the girdle of f-poles, hereafter the `s-vector', are in the
proportions of the elements of the generating stress
tensor.

N. Fry / Journal of Structural Geology 21 (1999) 7±218



5. Graphical concepts for projections out of more than
three dimensions

Because the six s-element dimensions of s-space
o�er little subjective appreciation, there is no need

for the co-ordinate axes of our plots to be restricted

to them. For this paper, the six-dimensional array

of f-poles is transformed to new orthogonal axes

corresponding to the array's principal directions of

second moment. Three of these new co-ordinate

axes at a time are then selected for plotting f-poles
co-ordinates, normally including the axis of ®fth lar-

gest second moment, which is the initial candidate

for the s-vector of the array. (Explanation is given

in Section 9.) However, this choice of co-ordinate

axes and projection directions is not fundamental.

Others may be found more suitable for extending

the ideas proposed in this paper to new purposes
or data sets.

The plots here are views of upper hemispheres,

shown within a cage consisting of the basal circle and

two vertical semicircles of intersection of the hemi-

sphere with the principal planes. Because the three

plotted co-ordinates do not sum to unity, the points lie

within rather than on the surface of the hemisphere, as
in Fig. 1. The selected co-ordinate axes of each plot

are ordered, the forward, rightward and upward axes

being of progressively smaller second moment. The

reasons are as follows. If a girdle of f-poles exists, the

moment towards its pole (the desired s-vector) should
be minimal. The digression of each f-pole away from a

perfect girdle towards the candidate s-vector is high-
lighted by having the girdle represented by the hori-

zontal base and the s-vector axis vertical, with each

point joined to the base by a vertical line (Fig. 1a). If

the f-poles do not extend around a girdle, but form a

cluster, an entire plane of directions represents candi-

dates for the desired s-vector. The extent of such clus-

tering is made more visible by having this plane of
minimal moment lying vertically from left to right,

leaving points concentrated in a back-to-front strip

(Fig. 1b).

These projections retain maximum information con-

tent in several ways. Co-ordinates from s-space are

plotted the maximum number at a time (three in three-

dimensional view). The co-ordinate values are not
rescaled. So, each datum lies not on the hemisphere

surface but inwards from it by an amount representing

the root mean squared magnitude of its remaining

(non-plotted) co-ordinates. It is represented not as a

point but as the line (Fig. 1) from that point dropped

along the direction of the least of the plotted moments

perpendicularly onto the principal plane of higher
moments. This helps to locate points, which otherwise

appear to ¯oat ill-de®ned in three dimensions, as well

as each line length representing the digression of that
datum away from a hyperplane girdle.

6. Conceptual basis for incorporating recorded shear
sense: q-space plots

The detailed handling of recorded shear sense varies,
depending on the number of degrees of freedom left
after analysis of the striation orientations. Each of the
one or more acceptable s-vectors is recomposed into
its corresponding real-space stress tensor. Any sum or
di�erence in any proportion of these tensors may be
the stress condition appropriate for the data set. To
constrain their proportions further, a graphical space
is used, of which the contributing stress tensors are or-
thogonal axes. The co-ordinates of a point in this
`recorded shear sense quanti®er'-space (hereafter `q-
space') are the weightings of these component stress
tensors.

Fig. 1. Projections of f-poles using three s-space co-ordinates at a

time. (a) A data set inconsistent with assumption of a common stress

tensor. The f-poles are at the apices of the vertical lines. Each line

length represents the digression of the datum from the hypothetically

best stress state girdle (the basal plane) towards its pole. The digres-

sions are large for many of these data, indicating that these faults do

not result from a single generating stress tensor. (b) A clustered data

set. These data show a spread between the back and the front of the

hemisphere only. Their very small spread along either the left-to-

right or vertical axes indicates that they could have been generated

by any stress tensor represented as any s-vector in the left-to-right

vertical plane.
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The basis for this graphical technique is the calcu-

lation of `recorded shear sense quanti®ers' (hereafter

`quanti®ers') for each fault for which a shear speci®-

cation (`normal', `sinistral', etc.) has been recorded.

The quanti®ers are positive if the computed and

recorded senses agree, negative if they con¯ict (as

detailed in Section 9). For each fault, evaluation of

the quanti®er for each of the candidate component

stress tensors gives the respective axial component of

a vector (q) in q-space. The ratio of these quanti®ers

is the ratio of their respective stress tensors in real

space which would maximise the shear in the sense

recorded for that fault. Any direction in q-space

which is within a right angle of this vector represents

proportions of component stress tensors which would
produce the recorded sense.

The array of q-vector directions is compiled for the
complete data set, giving a good visual appreciation of
whether an overall stress tensor (direction in q-space)
can be found which is consistent with (within a right
angle in q-space of) most or all of the recorded shear
senses. If such direction exists, its direction cosines are
in the required proportions of the contributing com-
ponent stress tensors.

In using this graphical procedure it is essential that
the only component stress tensors used are those
already known to be acceptable in terms of striation
orientations. These q-space plots are conditional upon
the result of, and not a substitute for, s-space plots.

Table 1

Values used in the various stages of deriving a reduced stress tensor, as described in the text and illustrated in Fig. 2

EXAMPLE OF A SIMPLE DATA SET

Data presented to three decimal places but calculated to at least six signi®cant ®gures.

Raw Field Data (Fault plane orientation, striation direction, sense)

Fault datum no. 1 2 3 4 5 6 7

Dip Azimuth 283 110 089 147 045 360 050

Dip 86 35 32 36 47 90 66

Bearing 012 020 009 200 328 270 325

Plunge 18 06 07 15 13 08 12

Sense Dextral Dextral Dextral Dextral Sinistral Dextral Sinistral

Direction cosines (=axial vector components of unit vectors n and b)

n1 ÿ0.224 0.196 ÿ0.009 0.493 ÿ0.517 ÿ1.000 ÿ0.587
n2 0.972 ÿ0.539 ÿ0.530 ÿ0.320 ÿ0.517 0.000 ÿ0.700
n3 0.070 0.819 0.848 0.809 0.682 0.000 0.407

b1 ÿ0.287 ÿ0.280 ÿ0.189 ÿ0.125 0.241 0.000 0.080

b2 ÿ0.134 0.770 0.834 0.894 0.676 ÿ0.139 0.450

b3 0.948 0.574 0.519 0.430 0.696 0.990 0.890

s-space vector components of (non-unit) vector normal to hyperplane

b1n1 0.064 ÿ0.055 0.002 ÿ0.062 ÿ0.125 0.000 ÿ0.047
b2n2 ÿ0.131 ÿ0.415 ÿ0.442 ÿ0.286 ÿ0.350 0.000 ÿ0.315
b3n3 0.066 0.470 0.440 0.348 0.475 0.000 0.362

b1n2+b2n1 ÿ0.249 0.302 0.092 0.481 ÿ0.475 0.139 ÿ0.320
b2n3+b3n2 0.913 0.321 0.432 0.586 0.101 0.000 ÿ0.440
b3n1+b1n3 ÿ0.233 ÿ0.117 ÿ0.165 0.111 ÿ0.195 ÿ0.990 ÿ0.490
Magnitude of above s-space vector composed from n,b coe�cients

0.987 0.777 0.782 0.891 0.798 1.000 0.876

Vector components rescaled to unit magnitude (=f-pole co-ordinates)

p1 0.065 ÿ0.071 0.002 ÿ0.069 ÿ0.156 0.000 ÿ0.054
p2 ÿ0.132 ÿ0.534 ÿ0.565 ÿ0.321 ÿ0.438 0.000 ÿ0.359
p3 0.067 0.605 0.563 0.391 0.595 0.000 0.413

p4 ÿ0.252 0.389 0.118 0.540 ÿ0.595 0.139 ÿ0.365
p5 0.924 0.414 0.553 0.658 0.127 0.000 ÿ0.502
p6 ÿ0.236 ÿ0.151 ÿ0.211 0.124 ÿ0.245 ÿ0.990 ÿ0.559
Magnitude of rescaled s-space vector (as a check=unity)

1.000 1.000 1.000 1.000 1.000 1.000 1.000

New co-ordinates of f-poles (using principal second moment axes)

e1 ÿ0.684 ÿ0.927 ÿ0.992 0.772 0.663 0.298 ÿ0.261
e2 0.226 0.130 0.050 ÿ0.583 0.548 0.558 ÿ0.940
e3 ÿ0.231 0.040 0.058 0.031 ÿ0.420 0.769 0.145

e4 0.653 ÿ0.349 ÿ0.054 0.243 ÿ0.278 0.086 ÿ0.156
e5 0.027 0.001 0.079 0.056 0.082 0.036 0.045

e6 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Test of fault sense: calculated sense agrees with ®eld record?

TRUE TRUE TRUE TRUE TRUE FALSE TRUE
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7. Some examples

7.1. A simple data set, with stress tensor well
constrained in s-space

Seven striated fault data have been selected from a
set of records of faults at Barry, near Cardi�, South
Wales, UK. They are tabulated in the top section of
Table 1. The stages in analysis of this set are detailed
below.

Stage 1 is the conversion of ®eld data into real space
vector information in a standard form. In this example
the required form is a set of direction cosines, using
orthogonal axes (1,2,3) corresponding to (north, east,
down), with the last always positive. These values, for

the fault normal and the direction in the plane of the
fault at right angles to the striation, being components

of unit vectors n and b, respectively, are shown in the
second section of Table 1.

Stage 2 is the calculation of vector components in s-
space. The coe�cients of each of the sij elements in
Eq. (1) provide, for each fault, components of a vector
which is normal to the hyperplane of acceptable stress

states. However, the magnitude of this vector is not
®xed. Division by its magnitude converts these com-

ponents of the normal into six-dimensional direction
cosines, which are the s-space co-ordinates ( p) of the
f-poles. Both unscaled and scaled values are given in

Table 1.

Stage 3 involves eigenvalues and eigenvectors of
the second moment tensor of the array of f-poles.

First, they have to be determined from the set of
co-ordinates, p, and the results for this example are
shown in Table 2. Then, they are used to calculate

new co-ordinates (e) in s-space, using as axes the
eigenvectors in rank order of eigenvalue, as shown

in the penultimate section of Table 1. Note that the
sixth e co-ordinate is systematically zero and is dis-
carded (see Section 9). Within the remaining space,

the direction which possesses least mean square f-
pole component, hence lowest second moment, is the

®fth e co-ordinate axis. This is the best estimate of
the s-vector which represents a common generating
stress tensor.

Stage 4 involves plotting and interpreting projections

from s-space using the new (e) co-ordinates. Fig. 2
shows two plots of values taken from Table 1, in both

cases with the ®fth co-ordinate vertical. These seven
fault data show substantial spread within the basal
planes of the plots (representing co-ordinate pairs 1,2

and 3,4, respectively), far more than of any datum up
the vertical axis. That is to say, the top of the hemi-

spheres in both parts of Fig. 2 really is the pole to a
girdle of f-poles which spread through the other signi®-
cant dimensions of s-space. The vertical in Fig. 2 can

be accepted as the direction of the desired s-vector.
Stage 5 involves real-space tensors. The elements of

the s-vector from Table 2 are directly recomposed into

Table 2

Eigenvectors and eigenvalues of the second moment tensor derived from values in Table 1

Ranking Eigenvalue

(scaled to 1st=1.0)

Axial components in s-space

6th 0.000 ÿ0.57736 ÿ0.57734 ÿ0.57735 0.00000 0.00000 0.00000

5th 0.006 ÿ0.80326 0.51371 0.28957 0.01411 0.07500 ÿ0.03461
4th 0.205 ÿ0.06788 ÿ0.19810 0.26598 0.77530 ÿ0.53276 0.02184

3rd 0.241 0.10514 0.29513 ÿ0.40027 0.40806 0.24139 ÿ0.71892
2nd 0.544 ÿ0.05320 ÿ0.13796 0.19116 ÿ0.47548 ÿ0.56425 ÿ0.63019
1st 1.000 ÿ0.05419 ÿ0.50734 0.56153 0.07823 0.57783 ÿ0.29043

Fig. 2. A small data set permitting one possible stress tensor. The

horizontal axes in (a) are the two directions of highest moments, in

(b) those of intermediate moments. The low moment direction of the

best s-vector is vertical in both.
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the stress tensor

sss �
ÿ0:803 0:014 ÿ0:035
0:014 0:514 0:075
ÿ0:035 0:075 0:290

24 35:
However, the opposite pole in hyperspace is equally
valid, and would give the negative of this tensor. The
sense of motion of the calculated traction (ss.n) of each
fault is now compared with that determined in the
®eld. If the senses all agree, the stress tensor ss is used
as it stands. If they all disagree, the negative of ss is
used instead. The results of this test for this example
are shown in the last section of Table 1. One fault
sense contradicts, and either the ®eld observation or
the attribution of this datum to the common stress ten-
sor is incorrect. Otherwise, the stress tensor has correct
sign.

Stage 6 is the derivation from the stress tensor, ss, of
the orientations of its principal stress axes and of its
stress ratio. This example gives, using tension positive
convention, principal axes with bearing and plunge: s1
359/02, s2 263/73, s3 090/17; and ratio of stress di�er-
ences (`stress ratio') of (s1ÿs2)/(s2ÿs3)=4.0.

7.2. Data sets consistent with more than one s-vector,
use of q-space

7.2.1. Two-dimensional q-space
The data from which Fig. 1(b) was taken are dis-

played further in Fig. 3. The vertical axes in Fig. 3(a)
and (b) are the directions of lowest and second lowest
meaningful moments, respectively, (corresponding to
the vertical and left-to-right axes of Fig. 1b). Although
vertical co-ordinates in Fig. 3(b) are visibly greater
than in Fig. 3(a), they are low in both cases and both
axes are accepted for the purpose of this example as
representing possible contributing tensors to the total
tensor to be determined. Their two s-vectors

f0:579; ÿ0:655; 0:076; 0:085; ÿ0:347; 0:318g
f0:041; 0:472; ÿ0:513; 0:322; ÿ0:536; 0:348g

are recomposed into real space stress tensors for the
horizontal and vertical axes of a two-dimensional q-
space plot (Fig. 3c). Using the direction cosines {0.837,
0.547} of the mean direction in Fig. 3(c) as the weight-
ing coe�cients for these two stress tensors gives the
following initial estimate of total stress tensor;

sss �
0:508 0:247 0:457
0:247 ÿ0:291 ÿ0:584
0:457 ÿ0:584 ÿ0:217

24 35:

Fig. 3. Data, also illustrated in Fig. 1(b) for which a plane of poss-

ible s-vectors exists. Here, the two principal moment directions

within this plane are shown one at a time as vertical axes of (a) and

(b). The use of these two s-vectors leads to construction of the two-

dimensional q-space plot (c). The large spot in (c) indicates the calcu-

lated mean direction (vector mean of unit vectors) in q-space. It can

be seen that the recorded shear senses of three data con¯ict with this

stress estimate, lying more than a right angle from its direction,

while two more lie almost at right angles in q-space. These ®ve data

do not support the mean direction as a generating stress state.

However, the relationship with the remainder of the data will be

worsened if an alternative q-space vector is chosen which lies outside

a restricted range around the mean. So, limits on compatibility with

the remaining data, taken here to be 0.1(p/2) and 0.8(p/2) anticlock-
wise of the horizontal axis, are used to calculate a range of possible

reduced stress tensor.
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Further consideration of (Fig. 3c) shows that, although
®ve data are unable or unlikely to be consistent with
the stress state responsible for the cluster of q-direc-
tions, a range of possible vectors can be accommo-
dated by this cluster. Taking, for example, limits at
0.1(p/2) and at 0.8(p/2) anticlockwise of the horizontal
axis, the corresponding direction cosines can be used
to calculate reduced stress tensors, as above. Table 3
gives the stress orientations and di�erences derived
from all the above three proportions of component
tensors. Inspection of Table 3 shows that the directions

of the principal stresses are well constrained, as is the
identity of the axis of maximum compression. It also
shows that the relative values of the other two princi-
pal stresses are ill constrained by this data set, and
that there lies within this reasonable range of stress
states a co-incidence of their values at which their
possible identities interchange.

7.2.2. Three-dimensional q-space
Fig. 4 illustrates a set of faults for which there are

three dimensions of very low co-ordinate values in s-
space. The three second moment eigenvectors which
correspond to possible s-vectors were calculated to be:

f0:615; 0:002; ÿ0:617; 0:373; ÿ0:316; ÿ0:057g
fÿ0:410; 0:783; ÿ0:373; 0:103; 0:100; ÿ0:245g
f0:235; ÿ0:194; ÿ0:042; ÿ0:096; 0:562; ÿ0:762g:

Their corresponding real-space stress tensors are used
as axes for a three-dimensional q-space diagram
(Fig. 4c). This shows all shear sense data to be consist-
ent with component proportions represented by the

Table 3

Best estimate of stress state derived from Fig. 3

Tension positive 0.1(p/2) Mean 0.8(p/2) Compression

positive

s1 axis 356/27 357/27 250/21 s3 axis
s2 axis 233/47 246/35 353/30 s2 axis
s3 axis 104/30 115/43 129/52 s1 axis
(s1ÿs2)/(s2ÿs3) 0.68 0.36 0.14 (s2ÿs3)/(s1ÿs2)
(s2ÿs3)/(s1ÿs2) 1.47 2.78 7.15 (s1ÿs2)/(s2ÿs3)

Fig. 4. The f-poles of this data lie almost on the plane of the greatest two moments, shown as the basal plane of (a). Their cluster extends very

little toward any of the three axes of (b). All three of the latter are accepted as possible stress tensors. They are used for three-dimensional q-

space analysis of shear sense (c), in which the radiating lines are the q vectors for the data, truncated to unit length at the spherical surface. The

large spot at the intersection of two non-principal great circles indicates the mean direction (mean of unit vectors). Part (d) shows a plane projec-

tion of intersections with the sphere, centred at the mean. All data lie well within the inner circle representing a right angle from the mean. The

mean lies centrally within the q-direction distribution. On these grounds the mean is accepted as a good estimate of total stress tensor, well con-

sistent with all data.
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mean direction (Fig. 4d) with direction cosines {0.953,
ÿ0.033, 0.301}. On the basis of these coe�cients, the
reduced stress tensor (tension positive convention) has
bearing and plunge of axial directions s1 201/12, s2
291/04, s3 038/77, and stress ratio (s1ÿs2)/
(s2ÿs3)=2.32.

7.3. Heterogeneous data

In the previous examples, the distribution of f-poles
in s-space was such that they had very low co-ordi-
nates in at least one dimension. They formed a girdle
or cluster, for which one or more s-vectors could be

Fig. 5. Series of s-space projections, each using the same moment axes, for an example of heterogeneous data. (a) The initial data include as

identi®able subsets: (1) a trend of data rising from the backward±forward (maximum moment) axis around the surface of the right half of the

hemisphere on a plane of about 258 tilt; (2) several scattered data of high vertical co-ordinate within the left half of the hemisphere. (b)

Recalculated co-ordinates of remaining data after deletion of the furthest outlier in (a). (c)±(h) Each plot results from recalculation of moments

and co-ordinates after deletion of the datum of highest vertical co-ordinate in the preceding plot. Changes are easily visible within the series (a)±

(b)±(c)±(d), but not (d)±(e)±(f)±(g)±(h).
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identi®ed and used to derive an estimate of the stress
tensor. However, sets of fault data are often more pro-
blematic. They may combine data generated in one
stress state with those generated in another, or contain
spurious `outliers'. The dangers of handling such data
by regression are well discussed by Will and Powell
(1991). A grid search alternative is appealing but has
its own dangers. In particular, it is easy to mistake
random clusters of data for meaningful signal, in the
absence of some underlying appreciation of how data
are distributed.

An example is presented here of a visibly hetero-
geneous set. The data in an initial s-space projection
(Fig. 5a) include, in the right half of the hemisphere, a
trend not around the circumference of the basal plane
(which in this projection represent proportions of the
components of two greatest moments), but close to a
plane rising up at about 258 to the right. Why do the
summed second moments not have a principal plane
through these data points, such that they plot around
the basal circumference, as in the equivalent projec-
tions of Figs. 2±4? The reason is the large e�ect on
second moments of those few data with high vertical
co-ordinates in the left of the hemisphere. These are
clearly outliers, not belonging to the girdle of data
plotting to the right. The marked e�ect of deleting just
the datum furthest to the top left is seen in Fig. 5(b).
The recalculated co-ordinates now lie much closer to
the basal circumference, but another outlier is now
highlighted by a large vertical co-ordinate. The e�ects
of deleting this, and then of the next point of high ver-
tical co-ordinate, are seen in Fig. 5(c) and (d). It is
clear in Fig. 5(d) that removal of just three outliers
has resulted in the data lying in a girdle around the
basal circumference of the plot.

For comparison, parts (e)±(h) of Fig. 5 show the
e�ects on this same s-space projection of a further
four deletions, in each case of the point of greatest ver-
tical co-ordinate in the preceding plot. The e�ect is
almost negligible because the deleted data are close to
the rest of the girdle. The associated stress parameters
are shown in Table 4. Any of the subsets (d)±(h) may

be taken as representative of the stress condition. Only
when we could visually distinguish data outside the
main girdle were we justi®ed in expecting their deletion
to improve the stress estimate. Once clearly mis®tting
data are removed, further removal of points may be a
falsi®cation rather than an improvement of the data.

Two further issues arising from this example will be
given brief mention below, as they are deserving of
further investigation.

7.4. Can a second stress tensor be estimated from a
deleted subset?

It is useful to consider this matter as one of s-space
geometry. If the deleted data are consistent with a
common stress, their f-poles lie on a second girdle.
Two girdles on a hypersphere must have an area of
intersection. In such a situation there almost inevitably
must be data used to calculate the ®rst stress estimate
which belong to the second. More data than just the
deleted points may be usable to estimate the second
stress state. The optimum algorithm for allocating
data to one subset or the other, or perhaps both with
some appropriate weighting (despite their clearly not
having simultaneously more than one generating stress
state), is complex to the point of being beyond the
scope of this paper.

7.5. Are stress tensors Andersonian?

The estimations of stress state after removal of two
or more outliers (Table 4) all have principal stress axes
within 108 of either horizontal or vertical. They ap-
proximate to the Andersonian condition of a vertical
principal stress. The examples in Figs. 2 and 4 both
have estimated axes within 178 of either horizontal or
vertical. This appears to be no coincidence. Of the sets
of data used to test the ideas in this paper, those
which gave good de®nition of a s-space vector have
almost all produced an approximation to Andersonian
conditions. One is led to speculate that only stress
states with a vertical principal direction can be stably

Table 4

s-vectors and corresponding real-space principal stress axes and strain ratios for progressive deletion of worst ®tting data, as illustrated in Fig. 5.

(Tension positive convention)

Fig. 5 s-VECTOR s1 axis s2 axis s3 axis (s1ÿs2)/(s2ÿs3)

(a) {0.758, ÿ0.587, ÿ0.172, 0.218, ÿ0.037, 0.056} 099 06 252 84 009 03 0.473

(b) {0.752, ÿ0.378, ÿ0.374, 0.389, ÿ0.022, 0.027} 107 13 283 77 017 01 0.111

(c) {0.737, ÿ0.344, ÿ0.393, 0.420, ÿ0.042, ÿ0.078} 108 09 312 80 199 04 0.073

(d) {0.742, ÿ0.354, ÿ0.388, 0.400, ÿ0.044, ÿ0.109} 108 05 334 83 198 05 0.068

(e) {0.744, ÿ0.355, ÿ0.389, 0.386, ÿ0.045, ÿ0.138} 107 01 011 83 198 07 0.056

(f) {0.746, ÿ0.358, ÿ0.389, 0.368, ÿ0.044, ÿ0.164} 288 05 052 81 197 08 0.046

(g) {0.753, ÿ0.362, ÿ0.391, 0.351, ÿ0.043, ÿ0.152} 286 01 024 83 196 07 0.042

(h) {0.767, ÿ0.367, ÿ0.400, 0.331, ÿ0.027, ÿ0.089} 105 03 336 85 195 04 0.040
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maintained throughout a large volume of rock and so
give rise to data capable of determining a consistent
stress tensor. Interestingly, on the basis of data used in
this work, there does not seem to be any bias in favour
of one particular regime within the Andersonian range.
The examples in this paper were selected to illustrate
plots, not for this purpose. Yet they happen to be var-
ied. In the terminology of Fry (1992a), to which refer-
ence should be made regarding the propriety of earlier
classi®catory schemes, they are: Fig. 2: Extending
Wrench; Fig. 4: Restricted Normal; Table 4:
Contracting Wrench (close to Axial Contractional).

8. Summary plots of ss-space second moments

In addition to the projections of data from six
dimensions, the main method of this paper provides
values of the second moments of the f-pole array in
their principal directions, which it is convenient to pre-
sent in graphical form (Fig. 6). The form chosen here
is a line graph, with straight sections between the
values concerned, taken in order of decreasing
moment. The display of gross di�erences between
types of data set is convenient, when added to the
other graphical methods described. However, to con-
centrate on summaries at the expense of plots of the
full data would in general be contrary to the purpose
of this paper.

9. Mathematical considerations

9.1. Degrees of freedom; stress tensor reduction

The main mathematical procedure adopted here
treats estimation of stress tensor as a problem in six
variables in the ®rst instance. This is unusual, as it is
well known that two of the six degrees of freedom of
the full stress tensor (absolute values of normal stres-
ses, and an overall scale factor) cannot be constrained
by striated fault data. All that can be estimated is a
reduced stress tensor, related to the full tensor by

sssfull � NI�Msssreduced; �2�
where I is the identity matrix and N and M are
unknown scalars. Normal practice is to arbitrarily
assign values, both for some measure of mean normal
stress and for the scale of the reduced stress tensor,
and then treat the problem as one in the four remain-
ing variables.

The retention here of six variables is not only delib-
erate, it is fundamental to the search for a geometry
suited to graphical representation. The two main han-
dicaps in such a search are

1. unwillingness to abandon real-space dimensions for

graphical representations; and

2. arbitrary assignment of values for unconstrained

variables.

It does not matter how simple the geometry is in six

dimensions, the geometry of the four-dimensional sur-

face to which it is collapsed by addition of constraints

may be either amenably simple or horrendously con-

torted, depending on the appropriateness of the

applied constraints. The inappropriateness of arbitra-

rily assigned parameters is the essential reason why

reduced stress tensors have been found so hard to rep-

resent graphically.

In the procedure adopted here, the two constraints

of the stress tensor reduction are not arbitrarily

assigned, but fall out naturally as the algorithm pro-

Fig. 6. Summary plots of principal second moment pro®les for six

data sets. Each pro®le is scaled to maximum moment of 1. (a) Three

sets for which it is not reasonable to calculate a stress tensor. The

highest and intermediate pro®les are for data showing no concen-

tration of f-poles into a girdle, indicating inconsistency of generating

stress (the latter illustrated in Fig. 1a). The lowest pro®le has signi®-

cant moment in only one dimension of s-space. The 10 faults in this

set hardly constrain stress tensor more than does a single fault,

because all data give similar constraint. (See Sectopm 9.2) (b) Three

data sets used in this paper as simple examples. That falling to zero

only for the ®fth calculated moment gives good constraint on stress

tensor (Fig. 2). Those falling to near zero for two and for three

moments, respectively, are those of Figs. 3 and 4, for which q-space

plots were needed in the determination of stress tensor.
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ceeds. It will be seen below that these correspond to
restricting the s-vectors representing stress states to lie
on the intersection of a hyperplane with the unit
hypersphere, thereby satisfying these equations.:

s11 � s22 � s33 � 0 �3�

s211 � s222 � s233 � s212 � s223 � s231 � 1: �4�
The simplest possible reduction of dimensions is the
distortionless reduction given by intersecting the space
with a hyperplane represented algebraically by a linear
equation such as (3). The geometric representation of
scaling is the intersecting of all possible directions
from the origin, representing unscaled proportions, by
a closed surface. The simplest possible closed surface is
the locus of points at unit distance from the origin (a
hypersphere), as represented algebraically in Eq. (4).
Thus, the four-dimensional surface of intersection of
s-space by one hyperplane and one hypersphere, as
here, is the simplest possible geometry for represention
of a reduced stress tensor. That is the fundamental
strength of the main procedure of this paper.

Of the above restrictions for determining the re-
duction of stress tensor, that of Eq. (3) is commonly
used (e.g. Angelier et al., 1982). The constant sum of
squares of the distinct tensor components to give a
unit s-space hypersphere (Eq. 4) is novel.

It is quite possible to bow to the normal practice of
reducing the numbers of variables at the start of the
procedure, by collapsing the ®rst three s-space co-ordi-
nates of each datum (b1n1,b2n2,b3n3) into two perpen-
dicular co-ordinates on the plane de®ned by Eq. (3),
and eventually reconverting the resulting ®rst two
direction cosines of a ®ve-dimensional s 0-vector back
into the three diagonal elements of the reduced stress
tensor. However, the additional algorithmic complexity
is not necessary.

9.2. Orthogonality of data

The most serious source of indeterminacy in fault
striation analysis is a lack of spread of fault orien-
tations.

Analogy with real space may be helpful on this
point. Theoretically, we can determine from any two
non-parallel directions the plane joining them. In prac-
tice, we know that the closer the lines are to being par-
allel, the more the similarity of the constraint which
they put on the plane, and the less con®dence we can
have in the result. To obtain the best results, the lines
should approach perpendicularity.

The problem of parallelism of data is considerably
worse when trying to determine stress tensor from
striated faults. In theory, only four faults are needed.
For a good estimation, the relationship between them

needs to be such that no pair is giving similar con-
straint. We can say that the data set should preferably
approach `orthogonality', not `parallelism', but the
meaning of such geometrical terms is, in the case of
fault constraints, far from intuitively obvious. In fact,
the space required to give these terms full meaning is
the s-space of this paper. The maximum constraint on
stress tensor is achieved precisely when the four faults
are represented by orthogonal f-pole vectors in s-
space. The determined s-vector for the stress tensor is
then truly orthogonal to all four data (as well as the
isotropic stress s-vector). A direct measure of ortho-
gonality of any pair of faults is provided by the
approach to zero of the dot product of their s-space
vectors.

9.3. Transformation to second moment axes and
abandonment of sixth co-ordinate

In the six-dimensional s-space used here, the hyper-
plane of possible s-vectors for any fault is given by
Eq. (1), which in expanded form is

b1n1s11 � b2n2s22 � b3n3s33 � �b1n2 � b2n1�s12
� �b2n3 � b3n2�s23 � �b3n1 � b1n3�s31 � 0: �5�

However, because the n and b vectors are perpendicu-
lar in real space, the ®rst three coe�cients always sum
to zero:

b1n1 � b2n2 � b3n3 � b:n � 0: �6�
Therefore, any s-space vector of the form {a,a,a,0,0,0}
satis®es Eq. (5). If a set of faults constrains the
reduced stress tensor perfectly, the set of correspond-
ing hyperplanes in s-space intersect in the entire plane
containing both the s-vector representation of that
reduced tensor and {a,a,a,0,0,0}. This plane is the geo-
metrical representation in s-space of any sum of the
reduced stress tensor to be evaluated plus an isotropic
normal stress (NI in Eq. 2), in any proportion.

The procedure for transformation to new axes is one
commonly used for determining multivariate principal
variation vectors, only in this case it is the directions
of least variation which are of particular interest.
First, a 6� 6 matrix is created for each datum. This
matrix is the outer product of the f-pole vector with
itself. That is to say, if p is the unit vector of the f-
pole, giving the direction of non-unit vector {b1n1,
b2n2, b3n3, (b1n2+b2n1),(b2n3+b3n2),(b3n1+ b1n3)}, el-
ement i,j of the matrix has value ( pi.pj). The sum of
these matrices over all faults is that of the second
moment (Scheidegger) tensor of the array. Its eigen-
values are the second moments of the array in the
principal directions given by its eigenvectors. The
matrix needed to perform the transformation of co-
ordinates from initial axes to these principal axes is
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composed of the eigenvectors. (See any book covering
eigenvector analysis, such as the `Introduction' and
`Jacobi Transformations' sections of the chapter
`Eigensystems' in Press et al., 1992.)

In practice, the e�ect of this procedure is that
the isotropic stress s-space eigenvector
2{(1/3)1/2,(1/3)1/2,(1/3)1/2,0,0,0} is that of minimum
(sixth largest) eigenvalue, while even a perfect set of
faults recorded in the ®eld will give a reduced stress s-
vector as the eigenvector of second least (®fth largest)
eigenvalue. The reason for this is that although both
eigenvalues are theoretically zero, they di�er by several
orders of magnitude in their precision. That of the iso-
tropic stress eigenvalue results from machine precision,
whereas that of the reduced stress eigenvalue results
from the precision of the ®eld records of fault orien-
tations. Table 2 provides an example where the di�er-
ence in precision is between four and ®ve orders of
magnitude, such that the ®rst three elements of the
eigenvector of sixth eigenvalue di�er only in their ®fth
decimal places from (1/3)1/2=0.577350. Consequently,
in the procedure here, the sixth eigenvector is simply
discarded together with all the co-ordinates of the f-
poles along its axis (all zero, as in Table 2). The
remaining ®ve new co-ordinate axes are those of the
reduced s-space which it is meaningful to represent
graphically and in which to search for suitable s-vector
of a reduced stress tensor. That is why the ®fth eigen-
value axis is that plotted vertically in most projections
from s-space, and only ®ve values are shown on the
summary plots of s-space second moments (Fig. 6).

An exception to the above observations will occur if
the procedure is used on a set of model data which
have been calculated to machine precision. For such a
set, the orthogonal ®fth and sixth eigenvectors will lie
in the correct plane, but rotated from the two vectors
required. In such a case, the ®fth eigenvector and the
stress tensor recomposed from it will not be reduced to
the condition given by Eq. (3). However, the principal
stress orientations and stress ratios calculated from it
will still be correct.

9.4. Acceptability and indeterminacy

In any procedure to solve `the inverse problem'
(resolving ss back from partial information about its
consequences), it is necessary to consider how much
mis®t between recorded and computed values is accep-
table. Sometimes, residual mis®t is speci®ed in terms
of ®eld measurements. The implication behind such a
formulation is that stress tensors are unvarying across
the space and time of generation of the faults being
considered, and that errors are due to human failings.
This conceptual attitude is not justi®ed. It is more
than possible that the main digressions from a simple
determination are due to real changes in stress tensor.

Indeed, it is not unreasonable to doubt whether a

stress state will ever be maintained across su�cient

time and space to produce a fault set ideally suited to

fault striation methods. We are in the business of test-

ing the reasonableness of an approximation, in this

case of approximation to a common reduced stress

tensor.

Additional problems arise when limits to ®eld obser-

vations are given in absolute terms:

As discussed elsewhere (Fry, 1992b), the ®eld par-

ameters for recording planes are not independent and

vary in their determinacy. To take just one example, if

a plane dips at three degrees, an angular error of, say,

308 in recorded strike or dip-azimuth is of no conse-

quence. The resulting error in its fault-normal n is less

than for a plane dipping at 458 with 38 errors in each

measurement. As dip tends to zero, strike or dip-azi-

muth become completely indeterminate. Any speci®ca-

tion of limit in absolute terms is inappropriate.

Absolute limit of striation orientation (e.g.

Hardcastle and Hills, 1991) is even more problematic.

Setting aside both problems associated with di�erent

methods of measuring linear directions in the ®eld and

problems analogous to those for planes, discussed

above, there can be relative orientations of fault plane

and stress tensor at which small changes in stress

cause large changes of striation direction. Worse still,

occurrence of such relative orientations can only be

known in hindsight, after the stress determination is

complete. However, in practical terms, this should be

of no consequence. If large variations in striation

direction correspond to small changes of stress tensor,

larger than normal errors in striation will a�ect the

determined stress tensor negligibly. Again, an absolute

limit in terms of ®eld measurement is not appropriate.

To avoid the kinds of problems mentioned above,

limits to acceptability of data need to be set, and cal-

culations of residual errors undertaken, in a way

which is

1. consistent,

2. reasonable for handling variability of stress tensor

as well as measurement error, and

3. proportionate in its e�ects on the determined stress

tensor.

The s-space geometry of this paper provides the

framework required, giving an improvement on the

formulation in Fry (1992b). As discussed in that

paper, angular ®tting errors can be best estimated by

the divergences between vectors. These may be evalu-

ated in s-space as simply unity minus the dot product

of unit vectors 1ÿPi�6
i�1 uivi: for unit vectors u; v

� �
;

whether the vectors concerned represent faults (as

f-poles), stress tensors, or a relationship of one to
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another. (See discussion of angular mis®t in Fry,
1992b.)

9.5. Vector relationships in q-space

The `recorded shear sense quanti®ers', for faults for
which shear speci®cations have been recorded, are for-
mulated in Table 5. Real-space vector r is the resolved
traction (sometimes referred to as `resolved shear
stress') in the plane of the fault, given using the star
product of De Paor (1990) and in traditional form by

r � tÿ n � t � tÿ �t:n�n: �7�
Each quanti®er is a scalar, de®ned here as a function
of r and n. The ®nal column gives forms suitable for
programming in languages unable to handle vector
algebra, but in so doing it also illustrates an important
attribute of the these quanti®ers. Like r and t, through
which they are derived, they are all linear in elements
of s.

On account of the linearity in elements of ss, the fol-
lowing will apply for each fault with speci®ed shear
sense. A linear combination of possible component
stress tensors will produce a proportionate linear com-
bination of their respective quanti®ers. That is, if a
total stress tensor has component tensors ssi (the sub-
script after bold ss denoting each of several tensors,
not elements) for which the calculated quanti®ers are
qi, then sstotal=Sxiss and qtotal=Sxiqi, where xi
denotes the amount of each contributing component
tensor. In q-space, these amounts (xi) are co-ordinates
along respective (i) axes. The total quanti®er Sqixi is
the dot product (q.x) of the q-space vector x, giving
the amounts of the component tensors, with a q-space
vector q={q1,q2, . . .}, giving the magnitudes of their
quanti®ers. The plane Sqixi=0 is the locus of combi-
nations of tensor components resulting in no computed
shear on the fault. It separates the half-space
Sqixi>0, in which computed shear sense accords with
that recorded, from the half-space Sqixi<0, in which
computed and recorded sense con¯ict. The normal to
this plane is the (non-unit) vector q. Its direction rep-
resents the fault in q-space.

If a q-space vector x can be found which is within a
right angle of the q vector of every fault, the total

stress tensor which x represents would in all cases pro-
duce shear in the sense recorded. If suitable x exists,
its co-ordinates are the coe�cients for summing the
component tensors derived from s-space vectors to the
appropriate total reduced stress tensor.

In the case of only one s-vector consistent with the
data, the above procedure reduces to calculating the
sign of the recorded shear sense quanti®er for each
fault. The appropriate reduced stress tensor may be
the one directly recomposed from the s-vector, or its
negative. If the sum of the quanti®ers is negative, the
signs of the reduced stress tensor and all quanti®ers
are reversed, and a non-visual assessment made of the
how many and which faults have recorded sense incon-
sistent with the majority. (It is convenient to program
automatic testing and reversal of signs for stress ten-
sors, including when more than one is acceptable,
because the majority of faults will then plot in the
positive quadrant or octant in q-space.)

The restriction emphasised above, that the dimen-
sions of q-space must be only those of component
stress tensors acceptable in terms of s-space vectors, is
essential. The q-space procedure only calculates the
relative magnitudes of shear in the direction of the
striae on the assumption that the striation direction is
correct. If it is not, there may be other components of
shear oblique to the striae as recorded, in which case
the bounding plane in q-space represents not minimal
shear but a likelihood that resultant shear will be in a
direction other than that accepted as correct for the
rest of the q-space plot. In other words, the precondi-
tions for the q-space method would be violated.

9.6. Real space axes and conventions

The choice of axes for describing orientations in real
space does not a�ect the s-space procedures, although
the processing of the resulting recomposed real-space
stress tensor(s) must accord with the axes adopted for
input of the n and b data. However, the q-space pro-
cedures are convention dependent. Simpler quanti®ers
than those in Table 5 are possible, some in terms of r
or t alone, if conventions are always strictly adhered
to regarding the signs of components of both n and ss,
corresponding to restricting the fault wall under con-

Table 5

Recorded shear sense quanti®ers (qi) for q-space vectors

Sense Quanti®er q(r,n) Alternatives Quanti®er q(n,s elements)

Normal r1.n1+ r2.n2 ÿr3.n3 n3Si=1
i=3ni(si3ÿn3Sj=1

j=3sijnj)
Reverse ÿ(r1.n1+ r2.n2) r3.n3 ÿn3Si=1

i=3i ni(si3ÿn3Sj=1
j=3sijnj)

Sinistral r1.n2ÿr2.n1 (t1.n2ÿt2.n1) Sj=1
j=3(n2s1jnjÿn1s2jnj)

Dextral r2.n1ÿr1.n2 ÿ(r1.n2ÿr2.n1)= ÿ(t1.n2ÿt2.n1) ÿSj=1
j=3(n2s1jnjÿn1s2jnj)

None 0 0 0
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sideration to particular hemispheres. In practice, it is
more complex to test and correct for such conventions
than to use the quanti®ers shown. The forms in
Table 5, by relying on correspondences between r (or
t) and n, allow such conventions to be relaxed, leaving
only the following. Denoting the co-ordinate axes as-
sociated with subscripts 1,2,3 as x,y,z, the quanti®ers
tabulated in Table 5 assume that

1. polarity of vectors and axes are consistent, so that
positive x,y,z, for t correspond to positive x,y,z, for
n;

2. z is vertical;
3. tension is positive;
4. positive y is clockwise from positive x when viewed

from above.

Violation of assumption (1), for example by trying to
adhere concurrently both to the general non-geological
convention that n is away from the fault plane and the
peculiarly geological convention of positive com-
pression, is likely to be troublesome, and can only be
made good by very careful re-evaluation of the signs
of traction vectors of types `normal', `reverse', `sinis-
tral' and `dextral' for the alternative conventions
adopted. Assuming that conventions (1) and (2) above
are adhered to:

1. Use of stress tensor with a compression positive
convention requires only interchange of the normal
and reverse quanti®ers.

2. Use of positive y anticlockwise from positive x
requires only interchange of the sinistral and dextral
quanti®ers.

3. If z is not taken as vertical, analogous conventions
can be deduced by appropriate substitutions of the
axial subscripts in Table 5.

10. Conclusions

The methods introduced in this paper have wide po-
tential application to the study of striated faults.

1. The visualisations of s-space and q-space diagrams
provide insight into the validity of existing estimates
of reduced stress tensor.

2. The visualisations may indicate that it is more
reasonable to deduce a range of possible stress
states, as in the example of Fig. 3, rather than a
single best estimate.

3. These methods allow a complete set of striated
faults, only a proportion of which have clear move-

ment sense, to be incorporated into a single pro-
cedure for testing homogeneity.

4. These methods can provide a complete reduced
paleostress determination, as set out for the
example in Fig. 2.

Perhaps the greatest bene®t of these procedures would
be if increased appreciation of data helped to over-
come the present impasse. On the one hand there are
those with unshakeable faith in paleostress determi-
nations from fault striations. On the other, there are
those who realise the particularity of the conditions
required for even a limited number of faults to record
the same stress state, and who consequently reject all
such evidence. These graphical illustrations and visual
appreciation, of how good or poor such data really
are, may be able to bring the two parties to an event-
ual accommodation.
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